<u>Unit 1 Day 13 - Guided Notes: Inverse Functions</u>

Recall: What is a function?

In a function, each ______ can have only one _____

- In other words, each _____ can only have one _____
- Decide whether or not the relations below represent functions: 0

Input	Output	Input	Outpu
-1	5	3	0
0	3	4	7
1	4	5	10
2	7	4	14
3	4	10	25

	or functions that	0.2	ch otho	r
	e) {(1,2), (2,2), (3,5), (4,52)}	YES	or N	C
	d) {(2, -9), (1, -4), (8, -8), (-4, -4)}	YES	or N	С
	c) {(0,1), (2,2), (0,3), (4,5)}	YES	or N	C
	b) (Table 2)	YES	or N	0
1	a) (Table 1)	YES	or N	0

Inverse Functions

- Inverse functions are ______ or functions that ______each other
 - Think of the function $f(x) = x^2$. How do you "undo" squaring x?
 - x^2 and _____ are inverse functions
- In inverse functions, the _____ and _____ values are switched from the original function
 - When x and y values switch places can you think of something else we have been learning about that might also switch?
 - When the x and y values switch, this results in a reflection over 0
- The inverse of the function f is labeled ______. We read this as "f inverse."

For each table below create a table that represents the inverse. Label the inverse correctly using function notation.

f(x)	у	у
-4	0	
-2	-3	
0	-7	
5	4	

- a) Does *f*(*x*) represent a function?
- b) Does $f^{-1}(x)$ represent a function?
- c) Find *f*(0):_____
- d) What is $f^{-1}(-3)$?
- e) What is $f^{-1}(4)$?

h(x)	У	у
-3	9	
-1	1	
0	0	
1	1	

- f) Does *h*(*x*) represent a function?
- g) Does $h^{-1}(x)$ represent a function?
- h) Find *h*(0):_____
- i) What is $h^{-1}(9)$?
- i) What is $h^{-1}(0)$?

- In the examples above, you were asked to evaluate the inverse function for a given input. Is there a pattern that you could use to evaluate the inverse of a function without creating an inverse table?
 - If the point (-5, 3) is a point on f(x), what point would be on $f^{-1}(x)$?
 - If the point (8, 1) is a point on g(x), what point would be on $g^{-1}(x)$?

Use the table of f(x) below to answer the following questions:

- a) $f^{-1}(9) =$ _____
- b) $f^{-1}(-2) =$

x	-5	-2	$-\frac{1}{2}$	1/2	2	5
f(x)	2	9	4	-4	-9	-2

The function f(x) is shown on the graph below. Using the same approach, you used with the tables, find the inverse values requested below:

- a) $f^{-1}(7) =$ _____
- b) f(7) = _____
- c) $f^{-1}(0) = _$
- d) f(3) = _____
- e) $f^{-1}(-3) =$ _____
- f) $f^{-1}(-5) =$ _____

Vertical Line Test

- To determine whether or not a graph represents a function we use the _____
 - If any vertical line touches the graph more than once, the graph is ______
 - If any possible vertical line touches the graph only once, the graph is ______
- Determine whether or not the graphs below represent functions:

Determining Inverse Functions from Graphs

- To determine whether or not a functions inverse will also be a function use the _____
 - The same rules apply for an inverse function with the horizontal line test that apply for a function and the vertical line test
- If a function does not pass the horizontal line test, it will have an inverse on a _____
 - All ______ functions will have an inverse function with a restricted domain along the line of symmetry

For each graph below, determine whether or not the inverse would represent a function. If an inverse does not exist, use vertical lines to create a domain where an inverse would exist.

Inverse Functions

- The inverse of a linear function is always a ______ function
- The inverse of a quadratic function is always a ______ function
- The inverse of a cubic function is always a ______ function

Finding the Inverse from an Equation

- 1. Change the _____ to a _____
- 2. Switch the _____ and _____
- 3. Solve for _____
- 4. Use the notation ______ to represent your inverse
- (1) Find the inverse of f(x) = 4x 7

(2) Find the inverse of $f(x) = -\frac{1}{4}x + 8$

(3) Find the inverse of $f(x) = 8x^2 - 5$

(4) Find the inverse of $f(x) = \frac{\sqrt{x+1}}{5}$. $x \ge -1$

(5) Find the inverse of $f(x) = \sqrt{x} - 4$