- In a function, each \qquad can have only one \qquad
- In other words, each \qquad can only have one \qquad
- Decide whether or not the relations below represent functions:

Input	Output
-1	5
0	3
1	4
2	7
3	4

Input	Output
3	0
4	7
5	10
4	14
10	25

| a) (Table 1) | YES or NO |
| :--- | :--- | :--- |
| b) (Table 2) | YES or NO |
| c) $\{(0,1),(2,2),(0,3),(4,5)\}$ | YES or NO |
| d) $\{(2,-9),(1,-4),(8,-8),(-4,-4)\}$ | YES or NO |
| e) $\{(1,2),(2,2),(3,5),(4,52)\}$ | YES or NO |

Inverse Functions

- Inverse functions are \qquad or functions that \qquad each other
- Think of the function $f(x)=x^{2}$. How do you "undo" squaring x ? \qquad - x^{2} and \qquad are inverse functions
- In inverse functions, the \qquad and \qquad values are switched from the original function
- When x and y values switch places can you think of something else we have been learning about that might also switch? \qquad
- When the x and y values switch, this results in a reflection over \qquad
- The inverse of the function f is labeled \qquad . We read this as " f inverse."

For each table below create a table that represents the inverse. Label the inverse correctly using function notation.

$\mathbf{f}(\mathbf{x})$	\mathbf{y}
-4	0
-2	-3
0	-7
5	4

a) Does $f(x)$ represent a function? \qquad

$h(x)$	y
-3	9
-1	1
0	0
1	1

	\mathbf{y}

f) Does $h(x)$ represent a function? \qquad
g) Does $h^{-1}(x)$ represent a function? \qquad
h) Find $h(0)$: \qquad
i) What is $h^{-1}(9)$? \qquad
e) What is $f^{-1}(4)$? \qquad

- In the examples above, you were asked to evaluate the inverse function for a given input. Is there a pattern that you could use to evaluate the inverse of a function without creating an inverse table?
- If the point $(-5,3)$ is a point on $f(x)$, what point would be on $f^{-1}(x)$? \qquad
- If the point $(8,1)$ is a point on $g(x)$, what point would be on $g^{-1}(x)$? \qquad

Use the table of $f(x)$ below to answer the following questions:
a) $f^{-1}(9)=$ \qquad
b) $f^{-1}(-2)=$ \qquad

\boldsymbol{x}	-5	-2	$-\frac{1}{2}$	$\frac{1}{2}$	2	5
$\boldsymbol{f}(\boldsymbol{x})$	2	9	4	-4	-9	-2

The function $f(x)$ is shown on the graph below. Using the same approach, you used with the tables, find the inverse values requested below:
a) $f^{-1}(7)=$ \qquad
b) $f(7)=$ \qquad
c) $\mathrm{f}^{-1}(0)=$ \qquad
d) $f(3)=$ \qquad
e) $\mathrm{f}^{-1}(-3)=$ \qquad
f) $\mathrm{f}^{-1}(-5)=$ \qquad

Vertical Line Test

- To determine whether or not a graph represents a function we use the \qquad
- If any vertical line touches the graph more than once, the graph is \qquad
- If any possible vertical line touches the graph only once, the graph is \qquad
- Determine whether or not the graphs below represent functions:

Function
Not a Function

Function
Not a Function

Function
Not a Function

Function
Not a Function

Function Not a Function

Determining Inverse Functions from Graphs

- To determine whether or not a functions inverse will also be a function use the \qquad

> The same rules apply for an inverse function with the horizontal line test that apply for a function and the vertical line test

- If a function does not pass the horizontal line test, it will have an inverse on a \qquad
- All \qquad functions will have an inverse function with a restricted domain along the line of symmetry

For each graph below, determine whether or not the inverse would represent a function. If an inverse does not exist, use vertical lines to create a domain where an inverse would exist.

Inverse Functions

- The inverse of a linear function is always a \qquad function
- The inverse of a quadratic function is always a \qquad function
- The inverse of a cubic function is always a \qquad function

Finding the Inverse from an Equation

1. Change the \qquad to a \qquad
2. Switch the \qquad and \qquad
3. Solve for \qquad
4. Use the notation \qquad to represent your inverse
(1) Find the inverse of $f(x)=4 x-7$
(2) Find the inverse of $f(x)=-\frac{1}{4} x+8$
(3) Find the inverse of $f(x)=8 x^{2}-5$
(4) Find the inverse of $f(x)=\frac{\sqrt{x+1}}{5} \cdot x \geq-1$
(5) Find the inverse of $f(x)=\sqrt{x}-4$
