### Unit 1 Day 8 Guided Notes: Piecewise Functions

## **Recall: Evaluating Functions**

- 1. Given  $f(x) = x^2 4$ , find f(-2):\_\_\_\_\_
- 2. Given  $g(x) = \frac{x-7}{4}$ , find g(-17):
- 3. Given  $h(x) = x^2 + 4x 9$  find h(-1):

#### **Piecewise Functions**

A \_\_\_\_\_\_ is a function with different equations with different given domains.

### **Domain Restrictions**

- Remember two operations that are mathematically impossible
  - Dividing by \_\_\_\_\_
  - Taking the square root of a \_\_\_\_\_\_
    - If your piecewise function asks you to do either of these, these numbers would be considered not in the\_\_\_\_\_

**Example**: Are there any values not in the domain of the piecewise function shown below:

$$\begin{cases} \frac{2}{x}, \ x < 4\\ \sqrt{10 - x}, \ x \ge 4 \end{cases}$$

#### **Evaluating Piecewise Functions**

• To evaluate a piecewise function, \_\_\_\_\_\_ the value of x into the "piece" of the function in which x fits in the domain

$$f(x) = \begin{cases} x+2 & \text{if } x \ge 2\\ 2x & \text{if } x < 2 \end{cases}$$
Find  $f(5)$ :  
Where does 5 fit?  
 $x \ge 2 \text{ or } x < 2$   
 $f(5) = \_\_\_\_= \_\_\_$   
Given f(x), find the value of  $2f(5) - \frac{1}{2}f(-3)$ .  
 $f(x) = \begin{cases} x+2 & \text{if } x \ge 2\\ 2x & \text{if } x \ge 2\\ 2x & \text{if } x < 2 \end{cases}$ 
Find  $f(-3)$ :  
Where does  $-3$  fit?  
 $x \ge 2 \text{ or } x < 2$   
 $f(-3) = \_\_\_\_= \_$ 

| $h(x) = \begin{cases} 3x+2\\ 2x\\ -2x+6 \end{cases}$ | if  x < -2<br>$if  -2 \le x \le 3$<br>if  x > 3 |
|------------------------------------------------------|-------------------------------------------------|
| Find <i>h</i> (2):                                   | Find $h(-3)$ :                                  |
| Where does 2 fit?                                    | Where does $-3$ fit?                            |
| $x < -2$ or $-2 \le x \le 3$ or $x > 3$              | $x < -2$ or $-2 \le x \le 3$ or $x > 3$         |
| h(2) = =                                             | h(-3) = =                                       |
| Given h(x), find the value of $h(2) - h(-3)$ .       |                                                 |

The piecewise function below shows the cost of buying x shirts from an online company.

 $\begin{cases} 15.00x + 25, & 0 \le x < 25 \\ 14.00x + 20, & 25 \le x < 100 \\ 12.50x, & x \ge 100 \end{cases}$ 

- 1. Find the cost of buying 20 shirts.
- 2. What would be the total cost of buying 80 shirts?
- 3. Explain what h(100) = 1,250 means in context.

A cell phone company charges customers a monthly fee based on the number of minutes, x, they use each month. This is represented by the piecewise function below.

 $\begin{cases} 30 + .05x, & 0 \le x < 500 \\ 40 + .03x, & 500 \le x < 1,000 \\ 60, & x \ge 1,000 \end{cases}$ 

- 1. If a customer used 400 minutes, what was their monthly bill?
- 2. If a customer used 900 minutes what would be their cost?
- 3. Explain what h(1,000) = 60 means in context.

# Graphs of Piecewise Functions

- The graph of a piecewise function can either be \_\_\_\_\_ or not continuous
  - If you can move your pencil across the graph without picking it up, the function is continuous 0
    - Decide whether or not each graph below is continuous or not continuous:







Not Continuous

Step Functions

Continuous

Continuous

Not Continuous

Not Continuous

#### Cost to Mail Package

5



- 1. How much would it cost to ship a package weighing 4 ounces?
- 2. What would be the cost of shipping a package weighing 0.8 ounces?
- 3. What would be the total cost of shipping both a 5-ounce package and a 3.4-ounce package?

# Domain and Range of Piecewise Graphs

When finding domain and range for a piecewise functions, you can either identify the domain/range as a whole, or identify the domain/range for each \_\_\_\_\_\_ or each "piece" of the function



Is this function continuous? \_\_\_\_\_\_

Given the Piecewise Graph, create a piecewise function to match.

- How many steps does this piecewise function have?
  - Domain Step 1: \_\_\_\_\_
  - Domain Step 2: \_\_\_\_\_

**Piecewise Function:** 

 $f(x) = \Big\{$ 

Given the Piecewise Graph, create a piecewise function to

match.

- How many steps does this piecewise function have? \_\_\_\_\_\_
  - Domain Step 1: \_\_\_\_\_
  - Domain Step 2: \_\_\_\_\_
  - Domain Step 3: \_\_\_\_\_

**Piecewise Function:** 

 $f(x) = \Big\{$ 



# Write a piecewise function to represent the following scenarios:

- A parking garage charges \$6 an hour for the first 4 hours that a car is parked. After that, the garage charges an additional \$3 an hours. Write a piecewise function for the cost of parking a car in the garage for x hours.
- A delivery service charges \$11 for a package that weighs 2 pounds or less. The service charges \$3 for each additional pound. Write a piecewise function that represents the cost of delivering a package weighing x pounds.