\qquad

- Midpoint: the point in the \qquad
MIDDLE of two points

1. To find the midpoint:

- X - value $=$ ADD the x -values and divide by $\quad 2$
- Y -value $=$ ADD they y-values and divide by $\quad \mathbf{2}$
- EXAMPLES
- Midpoint $=\left(\frac{x+x}{2}, \frac{y+y}{2}\right)$

1. Find the midpoint of the line created by the points $(-4,-6)$ and $(10,14)$

- Midpoint $=$ \qquad , 4 $4 —$)

2. Find the midpoint of the line created by the points $(9,0)$ and $(-1,3)$
3.

- Midpoint $=(\ldots 4$ \qquad , 1.5 \qquad)

4. Find the midpoint of $A B$ graphed to the right.

- Point $\mathrm{A}=(-2,4)$ Point $B=(4,2)$
- Midpoint $=(\ldots 1$ \qquad , 3)

5. Find the midpoint of LK graphed to the right.

- Point $\mathrm{L}=$ \qquad Point $K=(4,5)$
- Midpoint $=($ \qquad 0.5 , $\quad 3.5$ 3.5))

Distance Formula

- Formula for Finding the Distance between two point:

$$
d=\sqrt{(x-x)^{2}+(y-y)^{2}}
$$

- Find the distance between $(4,-7) \&(10,5)$

$$
d={\sqrt{(4-10)^{2}+(-7-5)^{2}}}_{d=13.42}
$$

- Find the distance between $(3,1)$ and $(-8,4)$

$$
d=\sqrt{(3--8)^{2}+(1-4)^{2}}
$$

Applications of the Distance Formula:

You are building a fence to enclose an area as shown in the diagram. Approximately, how many feet of fencing will be required?

$$
d=5.39+7.07+5+5.09=
$$

Triangle Midsegment Theorem

- If a segment joins the midpoints of two sides of a triangle, then the segment is parallel to the third side, and is half its length.

In each triangle, M, N, and P are the midpoints of the sides. Name a segment parallel to the one given.
1)

2)

3)

$\overline{W V} \| \overline{M P}$
$\overline{\underline{N P}} \| \overline{B C}$

$$
\overline{\underline{P N}} \| \overline{F E}
$$

4)

Each triangle below has a midsegment. Using the triangle midsegment theorem, find the value of x.
5)

6)

7)

8)

Find the length of the side indicated.
9) Find $P R=90$
10) Find $V W=43$
11) Find $K L=99$

$X=-80$

$X=-74$

$X=-58$

Unit 4 Lesson 4 Practice - Midpoint, Distance, and Triangle Midsegment
Find the midpoint and length of each line segment below:
1)

Find the Distance and Midpoint of the two points below:
5) $(-4,4),(5,-1)$

Midpoint $\quad\left(\frac{1}{2}, \frac{3}{2}\right)$
Distance $d=10.3$
6) $(2,4),(1,-3)$

Midpoint $\quad\left(\frac{3}{2}, \frac{1}{2}\right)$
Distance $d=70.07$
7) $(5,2),(-4,-3)$

$$
\text { Midpoint }\left(\frac{1}{2},-\frac{1}{2}\right)
$$

Distance $d=10.3$
8) $(-1,-6),(-6,5)$

$$
\operatorname{Midpoint}\left(-5,-\frac{11}{2}\right)
$$

In each triangle, M, N, and P are the midpoints of the sides. Name a segment parallel to the one given.
1)

2)

3)

$\ldots \overline{D E}$
\qquad $\| \overline{M P}$
$\overline{B D} \|$ \qquad
$\overline{M P}$

$\overline{R S} \|$

Each triangle below has a midsegment. Using the triangle midsegment theorem, find the value of x.
5)

6)

$X=13$
$X=11$
7)

$X=-10$

Find the length of the side indicated.
8) Find $D F$

9) Find $C D$

$$
X=27
$$

$$
X=-37
$$

$$
\overline{C D}=45
$$

$$
\overline{S T}=\mathbf{2 5}
$$

