Unit 4 Lesson 5 - Congruent Triangles, SSS, SAS, ASA, and AAS

- Congruent figures are figures with the same ______ and _____
 - When 2 figures are congruent, you can move 1 so that it fits exactly on the other
 - o _____, and _____ are all translations that result in congruent figures
 - o Can you think of a transformation from Unit 1 that would not result in a congruent figure?
- Congruent polygons have congruent ______ parts (matching sides and angles)
 - o When triangles are congruent, in proofs, we write _____ which stands for corresponding parts of congruent triangles are congruent
- When naming congruent polygons, always list corresponding vertices in the same order
 - Write a congruence statement for the two triangles shown here:

≅

Given: Δ WYS \cong Δ MKV. List the corresponding congruent parts without a picture.

$$\circ \quad \angle W \cong \underline{\hspace{1cm}}$$

$$\circ \quad \overline{YS} \cong \underline{\hspace{1cm}}$$

Write a congruence statement for the two triangles shown here:

Write a statement of congruence for each triangle below:

1)

Proving Congruence in Triangle

•	Before we proved two triangles were congruent by showing that all six pairs of corresponding parts were congruent. It is possible to prove two triangles congruent using fewer parts.
•	(SSS) Congruence – If three sides of one triangle are
	congruent to three sides of a second triangle, then the triangles are congruent.
•	(SAS) Congruence – If two sides and the included angle of one
	triangle are congruent to two sides and the included angle of a second triangle, then the triangles are
	congruent.
•	(ASA) Congruence – If two angles and the included side of one
	triangle are congruent to two angles and the included side of another triangle, then the triangles are congruent.
•	(AAS) Congruence – If two angles and the non-included side of
	one triangle are congruent to the corresponding two angles and side of a second triangle, then the two triangles
	are congruent.
Sta	ate if the two triangles are congruent. If they are, state how you know. (SSS, SAS, ASA, and AAS).
1)	2) 3) 4)
5)	6) 7) 8)
9)	10)

- Reflexive Property of Triangle Congruence $\rightarrow \Delta ABC \cong \Delta ABC$
- Symmetric Property of Triangle Congruence \rightarrow If \triangle ABC \cong \triangle EFG, then \triangle EFG \cong \triangle ABC

Given the figure below, prove that $\triangle ACD \cong \triangle CAB$.

Statement	Reason
1. $AB = CD, \overline{AB} \parallel \overline{CD}$	
2. ∠BAC ≅ ∠DCA	
3. AC = AC	
4. $\triangle ACD \cong \triangle CAB$	

Given $\overline{AB} \cong \overline{CD}$, $\overline{AD} \cong \overline{CB}$, prove $\Delta ABD \cong \Delta BCD$.

Statement	Reason
1. $\overline{AB} \cong \overline{CD}$	
$2. \ \overline{AD} \cong \overline{CB}$	
$3. \ \overline{BD} \cong \overline{BD}$	
4. $\triangle ABD \cong \triangle CBD$	

Given the figure below, prove that $\Delta NPL \cong \Delta MPL$.

Statement	Reason
1. $NP = PM, \overline{NP} \perp \overline{PL}$	
2. ∠MPL is a right angle	
∠NPL is a right angle	
3. PL = PL	
4. $\triangle NPL \cong \triangle MPL$	

Unit 4 Lesson 5-Classwork/Homework

I. Name the congruent triangles.

1. Δ*OGD* ≅ Δ_____

 $2. \Delta BOX \cong \Delta_{\underline{}}$

II. For each pair of triangles, tell whether the triangles are congruent by a postulate. If they are write a similarity statement.

3. $\triangle ABC \cong \triangle$

4. ΔABC ≅ Δ_____

5. ΔABC ≅ Δ_____

6. $\triangle ADC \cong \triangle$

7. ∆MAD ≅ ∆_____

8. ∆ABE ≅ ∆_____

9. $\triangle ACB \cong \triangle$

10. \triangle MNP $\cong \triangle$ _____

For each pair of triangles, tell: (a) Are they congruent (b) Write the triangle congruency statement. (c) Give the postulate that makes them congruent. Then write a prove in the bale provided.

1.

- b. Δ \cong Δ ___

- b. $\Delta \cong \Delta$

۱۸/	
vv	

- b. Δ \cong Δ ____

_			
	Statement	Reason	

Statement	Reason

Statement Reason

5.

- b. Δ ____ $\cong \Delta$

- $\mathsf{b}.\,\Delta$

(6	

Statement	Reason

	Statement	Reason

Statement	Reason

7.

- b. $\Delta \cong \Delta$

Statement	Reason	

8.

Statement	Reason

9.

Statement	Reason