- Congruent figures are figures with the same \qquad and \qquad
- When 2 figures are congruent, you can move 1 so that it fits exactly on the other
- \qquad
\qquad and \qquad are all translations that result in congruent figures
- Can you think of a transformation from Unit 1 that would not result in a congruent figure?
- Congruent polygons have congruent \qquad parts (matching sides and angles)
- When triangles are congruent, in proofs, we write \qquad which stands for corresponding parts of congruent triangles are congruent
- When naming congruent polygons, always list corresponding vertices in the same order
- Write a congruence statement for the two triangles shown here:
\qquad
- Given: $\Delta \mathrm{WYS} \cong \Delta \mathrm{MKV}$. List the corresponding congruent parts without a picture.

$$
\circ \quad \angle W \cong
$$

$$
\circ \quad \angle S \cong
$$

\qquad

- $\angle Y \cong$ \qquad
- $\overline{W Y} \cong$ \qquad
- Write a congruence statement for the two triangles shown here:
\qquad \cong \qquad

Write a statement of congruence for each triangle below:
1)

2)

3)

- $\overline{\mathrm{YS}} \cong$ \qquad
- $\overline{S W} \cong$ \qquad
- Before we proved two triangles were congruent by showing that all six pairs of corresponding parts were congruent. It is possible to prove two triangles congruent using fewer parts.
(SSS) Congruence - If three sides of one triangle are congruent to three sides of a second triangle, then the triangles are congruent.
- \qquad (SAS) Congruence - If two sides and the included angle of one triangle are congruent to two sides and the included angle of a second triangle, then the triangles are congruent.
- \qquad (ASA) Congruence - If two angles and the included side of one triangle are congruent to two angles and the included side of another triangle, then the triangles are congruent.
-

(AAS) Congruence - If two angles and the non-included side of one triangle are congruent to the corresponding two angles and side of a second triangle, then the two triangles are congruent.

State if the two triangles are congruent. If they are, state how you know. (SSS, SAS, ASA, and AAS).
1)

2)

3)

7)

4)

9)

10)

11)

12)

Proving Triangles Congruent

- Reflexive Property of Triangle Congruence $\rightarrow \Delta \mathrm{ABC} \cong \triangle \mathrm{ABC}$
- Symmetric Property of Triangle Congruence \rightarrow If $\triangle \mathrm{ABC} \cong \triangle E F G$, then $\triangle E F G \cong \triangle A B C$

Given the figure below, prove that $\triangle \mathrm{ACD} \cong \triangle \mathrm{CAB}$.

Statement		
1. $\quad \mathrm{AB}=\mathrm{CD}, \overline{\mathrm{AB}} \\| \overline{\mathrm{CD}}$		
2. $\angle \mathrm{BAC} \cong \angle \mathrm{DCA}$		
3. $\mathrm{AC}=\mathrm{AC}$		
4. $\quad \triangle \mathrm{ACD} \cong \triangle \mathrm{CAB}$		

Given $\overline{\mathrm{AB}} \cong \overline{\mathrm{CD}}, \overline{\mathrm{AD}} \cong \overline{\mathrm{CB}}$, prove $\Delta \mathrm{ABD} \cong \Delta \mathrm{BCD}$.

Statement	
Reason	
1. $\overline{\mathrm{AB}} \cong \overline{\mathrm{CD}}$	
2. $\overline{\mathrm{AD}} \cong \overline{\mathrm{CB}}$	
3. $\overline{\mathrm{BD}} \cong \overline{\mathrm{BD}}$	
4. $\Delta \mathrm{ABD} \cong \Delta \mathrm{CBD}$	

Given the figure below, prove that $\triangle N P L \cong \triangle M P L$.

Statement	Reason
1. $\quad \mathrm{NP}=\mathrm{PM}, \overline{\mathrm{NP}} \perp \overline{\mathrm{PL}}$	
2. $\angle \mathrm{MPL}$ is a right angle	
$\angle \mathrm{NPL}$ is a right angle	
3. $\mathrm{PL}=\mathrm{PL}$	
4. $\quad \triangle \mathrm{NPL} \cong \triangle \mathrm{MPL}$	

I. Name the congruent triangles.

1. $\triangle O_{D} G D \cong \triangle$

2. $\triangle B O X \cong \Delta$ \qquad

II. For each pair of triangles, tell whether the triangles are congruent by a postulate. If they are write a similarity statement.
3. $\triangle \mathrm{ABC} \cong \Delta$

4. $\triangle \mathrm{ABC} \cong \Delta$ \qquad
\qquad

5. $\triangle \mathrm{ADC} \cong \Delta$ \qquad
\qquad

6. $\triangle \mathrm{ABE} \cong \Delta$ \qquad

7. $\triangle \mathrm{MNP} \cong \triangle$ \qquad

Practice Proofs

For each pair of triangles, tell: (a) Are they congruent (b) Write the triangle congruency statement. (c) Give the postulate that makes them congruent. Then write a prove in the bale provided.
1.

a. \qquad
b. Δ \qquad $\cong \Delta$ \qquad
c.

Statement	Reason

4.

a.
b. Δ \qquad $\cong \Delta$ \qquad
c.

Statement	Reason

7.

a. \qquad
b. Δ \qquad $\cong \Delta$
c. \qquad

Statement	Reason

2.

a.
b. $\Delta \quad \simeq \Delta$
c.

Statement	Reason

5.

a.
b. \qquad $\cong \Delta$ \qquad
C. \qquad

Statement	Reason

8.

a.
b. Δ \qquad $\cong \Delta$ \qquad
c. \qquad

Statement	Reason

3. Given: T is the midpoint of WR

a.
b. $\Delta \quad \sim \Delta$
c.

Statement	Reason

6.

a.
b. Δ
c.

Statement	Reason

9.

a.
b. Δ \qquad $\cong \Delta$
c. \qquad

Statement	Reason

