Unit 4 Lesson 6 - Proving Congruence in Triangles

Recall triangle congruence postulates:

_____(SSS) Congruence – If three sides of one triangle are congruent to three sides of a second triangle, then the triangles are congruent. _____(SAS) Congruence – If two sides and the included angle of one triangle are congruent to two sides and the included angle of a second triangle, then the triangles are congruent. _____(ASA) Congruence – If two angles and the included side of one triangle are congruent to two angles and the included side of another triangle, then the triangles are congruent. (AAS) Congruence – If two angles and the non-included side of one triangle are congruent to the corresponding two angles and side of a second triangle, then the two triangles are congruent. Determine whether the two triangles below are congruent. If they are, which postulate above proves congruence: 2) 3) 4) 1) 6) 5) 8) 11) 9) 10) 12)

Proving Triangles Congruent

- Reflexive Property of Triangle Congruence $\rightarrow \Delta ABC \cong \Delta ABC$
- Symmetric Property of Triangle Congruence \rightarrow If \triangle ABC $\cong \triangle$ EFG, then \triangle EFG $\cong \triangle$ ABC

Given the figure below, prove that $\triangle ACD \cong \triangle CAB$.

Statement	Reason
1. $AB = CD, \overline{AB} \parallel \overline{CD}$	
2. $\angle BAD \cong \angle ADC$	
3. $AD = AD$	
4. $\triangle ACD \cong \triangle ADB$	

Given $\overline{AB} \cong \overline{CD}$, $\overline{AD} \cong \overline{CB}$, prove $\triangle ABD \cong \triangle CBD$.

Statement	Reason
1. $\overline{AB} \cong \overline{CD}$	
2. $\overline{AD} \cong \overline{CB}$	
3. $\overline{\text{BD}} \cong \overline{\text{BD}}$	
4. $\triangle ABD \cong \triangle CBD$	

Given the figure below, prove that $\triangle NPL \cong \triangle MPL$.

Statement	Reason
1. NP = PM, $\overline{\text{NP}} \perp \overline{\text{PL}}$	
2. \angle MPL is a right angle	
∠NPL is a right angle	
3. $PL = PL$	
4. $\Delta NPL \cong \Delta MPL$	

Writing proofs without statements:

- 1. Start with the given information.
- 2. Fill in properties/theorems you can infer.
- 3. End with what you are trying to prove.

Given: $\overline{\text{LT}} \cong \overline{\text{TR}}, \angle \text{ILT} \cong \angle \text{ETR}, \text{IT} \parallel \text{ER}$

Prove: Δ LIT $\cong \Delta$ TER

Statement	Reason
1.	
2.	
3.	
4.	
5.	

Given: $\overline{BA} \cong \overline{ED}$

C is the midpoint of \overline{BE} and \overline{AD}

Prove: $\triangle ABC \cong \triangle DEC$

Statement	Reason
1.	
2.	
3.	
4.	
5.	

Given: C is the midpoint of \overline{BD} . $\overline{AB} \perp \overline{BD}$, $\overline{BD} \perp \overline{DE}$

Prove: $\triangle ABC \cong \triangle EDC$

Statement	Reason
1.	
2.	
3.	
4.	
5.	
6.	
7.	

