-

\qquad (SSS) Congruence - If three sides of one triangle are congruent to three sides of a second triangle, then the triangles are congruent.

- \qquad (SAS) Congruence - If two sides and the included angle of one triangle are congruent to two sides and the included angle of a second triangle, then the triangles are congruent.
- \qquad (ASA) Congruence - If two angles and the included side of one triangle are congruent to two angles and the included side of another triangle, then the triangles are congruent.
\qquad (AAS) Congruence - If two angles and the non-included side of one triangle are congruent to the corresponding two angles and side of a second triangle, then the two triangles are congruent.

Determine whether the two triangles below are congruent. If they are, which postulate above proves congruence:
1)

2)

3)

4)

5)

6)

7)

8)

9)

10)

11)

12)

Proving Triangles Congruent

- Reflexive Property of Triangle Congruence $\rightarrow \Delta \mathrm{ABC} \cong \triangle \mathrm{ABC}$
- Symmetric Property of Triangle Congruence \rightarrow If $\triangle \mathrm{ABC} \cong \triangle E F G$, then $\triangle E F G \cong \triangle A B C$

Given the figure below, prove that $\triangle \mathrm{ACD} \cong \triangle \mathrm{CAB}$.

Statement		
Reason		
1. $\mathrm{AB}=\mathrm{CD}, \overline{\mathrm{AB}} \\| \overline{\mathrm{CD}}$		
2. $\angle \mathrm{BAD} \cong \angle \mathrm{ADC}$		
3. $\mathrm{AD}=\mathrm{AD}$		
4. $\quad \triangle \mathrm{ACD} \cong \triangle \mathrm{ADB}$		

Given $\overline{\mathrm{AB}} \cong \overline{\mathrm{CD}}, \overline{\mathrm{AD}} \cong \overline{\mathrm{CB}}$, prove $\triangle \mathbf{A B D} \cong \Delta \mathbf{C B D}$.

Statement	Reason
1. $\overline{\mathrm{AB}} \cong \overline{\mathrm{CD}}$	
2. $\overline{\mathrm{AD}} \cong \overline{\mathrm{CB}}$	
3. $\overline{\mathrm{BD}} \cong \overline{\mathrm{BD}}$	
4. $\Delta \mathrm{ABD} \cong \Delta \mathrm{CBD}$	

Given the figure below, prove that $\triangle \mathrm{NPL} \cong \triangle \mathrm{MPL}$.

Statement	Reason
1. $\quad \mathrm{NP}=\mathrm{PM}, \overline{\mathrm{NP}} \perp \overline{\mathrm{PL}}$	
2. $\angle \mathrm{MPL}$ is a right angle	
$\angle \mathrm{NPL}$ is a right angle	
3. $\mathrm{PL}=\mathrm{PL}$	
4. $\quad \Delta \mathrm{NPL} \cong \triangle \mathrm{MPL}$	

Writing proofs without statements:

1. Start with the given information.
2. Fill in properties/theorems you can infer.
3. End with what you are trying to prove.

Given: $\overline{\mathrm{LT}} \cong \overline{\mathrm{TR}}, \angle \mathrm{ILT} \cong \angle \mathrm{ETR}, \mathrm{IT}| | \mathrm{ER}$

Prove: $\Delta \mathrm{LIT} \cong \Delta \mathrm{TER}$

Statement	
1.	
2.	
3.	
4.	
5.	

Given: $\overline{B A} \cong \overline{E D}$

C is the midpoint of $\overline{B E}$ and $\overline{A D}$
Prove: $\triangle \mathrm{ABC} \cong \triangle \mathrm{DEC}$

Statement	
1.	
2.	
3.	
4.	
5.	

Given: C is the midpoint of $\overline{B D} \cdot \overline{A B} \perp \overline{B D}, \overline{B D} \perp \overline{D E}$
Prove: $\triangle \mathrm{ABC} \cong \triangle \mathrm{EDC}$

Statement	
1.	
2.	
3.	
4.	
5.	
6.	
7.	

