1. Circle any graph below that has an inverse function. For those that do not have an inverse function, draw a vertical line that would divide the graph into sections that do have inverse functions.

The table to the right shows the values of the function $g(x)$. Use this table to answer the questions below.
2. What is $g(-2) ? \quad-16$
3. What is $g^{-1}(-2) ?-1$
4. What is $g(0)$? \qquad
5. What is $g^{-1}(0) ?$
6. What is $g^{-1}(16) ?$
7. What is $g^{-1}(2) ?$
8. What is $g(2) ?$

\boldsymbol{x}	$\boldsymbol{g}(\boldsymbol{x})$
-3	-54
-2	-16
-1	-2
0	0
1	2
2	16
3	54

9. What is $g^{-1}(54) ?$

The graph to the right represents the function $h(x)$. Use this graph to answer the questions below about $h(x)$.
10. Find $h(-3)$: \qquad
11. Find $h^{-1}(-3): \quad-6$
12. Find $h(8)$: \qquad
13. Find $h^{-1}(4): \quad-3$
14. Find $h(-8): \quad 2$
15. Find $h^{-1}(2): \quad-\quad-8$
16. Find $h^{-1}(-2): \quad 0$
17. Find $h^{-1}(0): \quad 5$

18. Three functions are shown below. Two of the functions represent inverses of one another. Identify which two functions are inverses. Prove your answer mathematically.

$$
f(x)=4 x^{3}-8
$$

$$
g(x)=\sqrt[3]{\frac{x+2}{4}}
$$

Find the inverse of each function below. Label the inverse function with the proper notation.
19. $f(x)=3 x+1$

$$
f^{-1}(x)=\frac{x-1}{3}
$$

$$
\begin{aligned}
& \text { 20. } g(x)=5-2 x^{2} \\
& \qquad g^{-1}(x)= \pm \sqrt{\frac{x-5}{-2}}
\end{aligned}
$$

21. $h(x) \sqrt[3]{4 x-1}+5$

$$
h^{-1}(x)=\frac{(x-5)^{3}+1}{4}
$$

22. $j(x)=\sqrt{3 x+1}-10$

$$
j^{-1}(x)=\frac{(x+10)^{2}-1}{3}
$$

23. $k(x)=\frac{3 x^{2}}{4}$

$$
k^{-1}(x)= \pm \sqrt{\frac{4 x}{3}}
$$

24. $m(x)=\frac{x-8}{4}$

$$
m^{-1}(x)=4 x+8
$$

