- Similar triangles are trianlges that have the \qquad but not necessarily the \qquad
- When we say that triangles are \qquad there are several results that come from it.

Fill in the following statements:

$$
\begin{aligned}
\angle A \cong \angle & \frac{\overline{A B}}{}=\frac{\overline{B C}}{}=\frac{\overline{A C}}{} \\
\angle B \cong \angle &
\end{aligned}
$$

Ex 1: Can these triangles be similar? Why or why not?
\qquad

Ex 2: The two triangles below are known to be similar, determine the missing value of x.

Ex 3: Given that $\triangle J H K \sim \triangle P O M, \angle H=90^{\circ}, \angle J=40^{\circ}, \angle M=x+5$, and $\angle O=y$, find the value of x and y.
\qquad

Ex 4: Find the missing value $\mathrm{x}=$ \qquad

Ex 5: Find the missing value of x and the length of side $\overline{C B}$

$$
\begin{aligned}
& \mathrm{x}= \\
& \overline{C B}= \\
& \hline
\end{aligned}
$$

Ex 6: Find the missing value of x and the length of side $\overline{J U}$

$$
\frac{x=}{\overline{J U}=}
$$

Ex 7: Find the missing value of x and the length of side $\overline{C B}, \overline{A B}, m \angle A, m \angle F$, and $m \angle B$

I. AA Similarity (Angle-Angle) If \qquad angles of one triangle are congruent to \qquad angles of another triangle, then the triangles are \qquad _.

II. SSS Similarity (Side-Side-Side) If the measures of the corresponding \qquad of 2 triangles are proportional, then the triangles are \qquad .

III. SAS Similarity (Side-Angle-Side) If the measures of \qquad sides of a triangle are proportional to the measures of \qquad corresponding sides of another triangle and the angles between them are congruent, then the triangles are \qquad .

Show how the triangles are similar (if they are similar), state the reason and show all the values.
1.

2.

3.

4.

Unit 5-Lesson 8 Practice - Similar Triangles

Solve each proportion by using cross-products.

1. $\frac{9}{28}=\frac{\mathrm{x}}{84}$
2. $\frac{3}{18}=\frac{4 x}{7}$
3. $\frac{3}{b+16}=\frac{4}{48}$
4. $\frac{5}{k+17}=\frac{8}{152}$
5. $\frac{x+5}{7}=\frac{x+3}{5}$

Solve each proportion.

1. $\frac{5}{6}=\frac{x}{9}$

Circle your final answer.

2. $\frac{2}{8}=\frac{x}{20}$
3. $\frac{-8}{11}=\frac{12}{x}$
4. $\frac{3}{x}=\frac{20}{-35}$
5. $\frac{x+3}{4}=\frac{7}{8}$
6. $\frac{x-6}{5}=\frac{7}{12}$
7. $\frac{8}{9}=\frac{x-2}{6}$
8. $\frac{1}{x+5}=\frac{2}{3}$
9. $\frac{8}{x+10}=\frac{4}{2 x-7}$
10. $\frac{6}{x}=\frac{2}{5}$
11. $\frac{9}{4}=\frac{36}{z}$
12. $\frac{5}{3}=\frac{t+8}{18}$

Do the following ratios form a proportion? Meaning, are they equal?

1. $\frac{2}{3}=\frac{16}{24}$
2. $\frac{9}{5}=\frac{10}{18}$
3. $\frac{7}{4}=\frac{21}{14}$
4. $\frac{8}{7}=\frac{24}{21}$

SIMILAR FIGURES:

Find the values of x and y if $\Delta \mathrm{JHI} \sim \Delta \mathrm{MLN}$.

a) Write proportions for the corresponding sides.
b) Write the proportion to solve for x .
c) Write the proportion to solve for y .

Write and solve proportions to solve for each variable.
1.

2.

3.

5.

6.

4.

