Unit 6-Lesson 1: Sample Spaces, Subsets, and Basic Probability

- There are a total of \qquad cards in a deck.
- There are \qquad ranks of cards. These ranks include the numbers \qquad through
\qquad , \qquad , ——, \qquad , \qquad . This ordering of the rank is called "ace high."
- There are \qquad suits: \qquad
\qquad , \qquad ,
\qquad -.
- There are \qquad hearts \qquad diamonds, \qquad spades and \qquad clubs.
- The diamonds and hearts are printed in red. The spades and clubs are printed in black. So there are \qquad red cards and \qquad black cards.
- Each rank has four cards in it (one for each of the four suits). This means there are four nines, four tens and so on.
- The jacks, queens and kings are all considered \qquad cards. Thus there are three face cards for each suit and a total of \qquad face cards in the deck.
- The deck does not include any jokers.

Vocabulary:

The set of all possible outcomes of an experiment.

Ex: List the sample space, S , for each of the following:

a. Tossing a coin: \qquad
b. Rolling a six-sided die: \qquad
c. Drawing a marble from a bag that contains two red, three blue and one white marble: \qquad

Vocabulary:

- The \qquad of two sets $(\mathbf{A} \cap \mathbf{B})$ is the set of all elements in both set AND set B.
- The \qquad of two sets $(A \cup B)$ is the set of all elements in set A OR set B.

Ex: Given the following sets, find $A \cap B$ and $A \cup B$

$A=\{1,3,5,7,9,11,13,15\} \quad B=\{0,3,6,9,12,15\}$
$A \cap B=$ \qquad $A \cup B=$ \qquad

Sometimes drawing a diagram helps in finding intersections and unions of sets.

Vocabulary:

A \qquad is a visual representation of sets and their relationships to each other using overlapping circles. Each circle represents a different set.

EX: Factors of 12 and factors of 16

EX: In a class of 60 students, $\mathbf{2 1}$ sign up for chorus, 29 sign up for band, and 5 take both. 15 students in the class are not enrolled in either band or chorus.

Vocabulary:

The \qquad of a set is the set of all elements NOT in the set.

- The compliment of a set, A, is denoted as A^{C}

Ex: $\quad S=\{\ldots-3,-2,-1,0,1,2,3,4, \ldots\}$

$$
A=\{\ldots-2,0,2,4, \ldots\}
$$

$$
A^{C}=
$$

\qquad

Vocabulary:

Probability of an event occurring is: $\mathrm{P}(\mathrm{E})=\frac{\text { Number of Favorable Outcomes }}{\text { Total Number of Outcomes }}$
We can use sample spaces, intersections, unions, and compliments of sets to help us find probabilities of events. *Note that $\mathrm{P}\left(\mathrm{A}^{\mathrm{C}}\right)$ is every outcome except (or not) A , so we can find $\mathrm{P}\left(\mathrm{A}^{\mathrm{C}}\right)$ by finding $1-\mathrm{P}(\mathrm{A})^{*}$ $P(A)$ is always between 0 and 1

If $P(A)=0$, then \qquad (will never happen) If $P(A)=1$, then \qquad (will always happen)

EX: An experiment consists of tossing three coins.
List the sample space for the outcomes of the experiment
Sample Space: \qquad
Find the following probabilities:
a. $\mathrm{P}(\mathrm{all}$ heads)
b. P (two tails)
c. P (no heads)
d. P(at least one tail)
e. How could you use compliments to find d?

EX: A bag contains six red marbles, four blue marbles, two yellow marbles and 3 white marbles. One marble is drawn at random.

List the sample space for this experiment
Sample Space:
Find the following probabilities:
a. $P($ red $)$
b. P (blue or white)
c. P(not yellow)
\qquad

EX: A card is drawn at random from a standard deck of cards. Find each of the following:
a. P (heart)
b. P(black card)
c. P(2 or jack)
d. P(not a heart)

Unit 6-Lesson 1 Classwork/Homework

1. Organize the data into the circles.

Factors of $64: 1,2,4,8,16,32,64$
Factors of 24: 1, 2, 3, 4, 6, 8, 12, 24

2. Answer Questions about the diagram below

a. How many students play sports year-round?
b. How many students play sports in the spring and fall?
c. How many students play sports in the winter and fall?
d. How many students play sports in the winter and spring?
e. How many students play only one sport?
f. How many students play at least two sports?

g. Find the probability a student plays a spring sport?
3. Suppose you have a standard deck of $\mathbf{5 2}$ cards. Let
A: draw a 7
B: draw a Diamond
a. Describe $A \cup B$ for this experiment, and find the probability of $A \cup B$
b. Describe $A \cap B$ for this experiment, and find the probability of $A \cap B$
4. Suppose a box contains eight marbles, one red, five blue, and two white. One marble is selected, its color is observed, and then the marble is placed back in the box. The marbles are scrambled, and again, a marble is selected and its color is observed.

Sample Space: \qquad
P (white marble):
P (red and blue marble): \qquad
5. Suppose you have a jar of candies: 4 red, 5 purple and 7 green. Find the following probabilities of the following events:
a. Selecting a red candy: $P($ red $)$:
b. Selecting a purple candy. P(purple):
c. Selecting a green or red candy. P(green or red):
d. Selecting a yellow candy. P(yellow):
e. Selecting any color except a green candy. P(not green): \qquad
6. Consider the throw of a die experiment. Assume we define the following events:

A: observe an even number
B: observe a number less than or equal to 3
a. Describe $A \cup B$ for this experiment: \qquad
b. Describe $A \cap B$ for this experiment: \qquad

